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ABSTRACT

A number of approaches have been proposed (and several implemented)

for the solution of lexicographic, multiobjective programing problems.

These approaches may be divided into two classes. The first encompasses

the development of algorithms specifically designed to deal directly with

the initial model while the second attempts to transform, efficiently, the

lexicographic, multiobjective model into an equivalent, single objective

programming problem. This second approach would appear particularly at-

tractive since it permits the use of conventional, readily available, math-

ematical programing software. In this paper we address a particular form

of the lexicographic, multiobjective model; specifically one in which all

functions are linear and all variables integer. It is then shown how a re-

cently developed scheme for the transformation of this model may be sub-

stantially improved. As a result, lexicographic, maltiobjective integer

linear programs may be easily converted into conventional linear integer

*-." programs wherein the magnitude of the objective function coefficients are

minimized.
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1. INTRODUCTION

In a recent paper, Sherali [31 introduced a weighting factor scheme

for the conversion of certain lexicographic, multiobjective programming

problems into equivalent single objective models. The specific problem ad-

dressed was one in which:

(1) all functions (i.e., objectives and constraints) are linear

(2) all variables are restricted to integer values

(3) the multiple objectives are preemptively ordered

That is, we seek the solution of a Lexicographic, Multiobjective Integer

Linear Programing, or LMOILP, problem. The LNOILP problem is given as:

maximize {C*x: A*x-b, O4x~u and integer} (M)

where:

C is a (Kn) matrix whose rows represent K preemptively ordered

objective functions

A is a (a,n) constraint matrix

x, b, and u are n, a, and n column vectors, respectively

The LMOILP problem of (P) is also known as the lexicographic vectormax pro-

graming problem. Note that (P) should not be confused with a multiobjec-

rive model having somewhat similar form; specifically the lexicographic

goal programing problem. For comparison, the lexicographic linear goal

programming model is shown as (G), below:

satisfy {C*zxb': A*x-b, x continuous or integer (G)

where:



* '. . . . . .

C*x are the set of original, preemptively ordered objectives
.:.

• " b' represents the goal levels, or target values for each of the orig-

inal objectives. Thus, C*x)b' denotes a vector of goals which are

to be preemptively satisfied,

Although a conversion scheme for (G) is also possible, our interest in

this paper shall be restricted to the LZOILP model as shown in (P). Fur-
.o

ther details with regard to model (G) may be found in the references (1,2].

Aggregation of Objectives

Except for the multiple, preemptively ordered objectives, (P) would be

a linear integer programing model. Consequently, one approach to the so-

lution of (P) is to first transform it into an equivalent single objective

model via the iggregation of all objectives into a single, equivalent ob-

jective function. We shall denote the transformed problem as (P'), where

the general form of (P') is given as:

maximize {wC)*x: A*x-b, Ox<u and integer} (P')

To accomplish this transformation, we must determine w , a K order col-

umn vector of weights so as to Insure that the solution to (P') is the sm

as that which would be obtained by solving (P). The determination of w

is made more difficult by recalling that the objectives are preemptively

ordered. However, if such a weighting may be found, we may then use con-

ven-ioal (i.e., single objective) algorithm and readily available soft-

ware to solve the new problem. Sherali [31 has devised algorithm which

accomplish such a transformation. That is, he shows how the preemptively

2
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ordered multiple objectives may be aggregated into a single, equivalent ob-

jective for which the solution satisfies the preemptive ordering of the

original set of objectives. A drawback of his approach is that the magni-

tude of the coefficients of the aggregate objective function may be enor-

mous, thus limiting the practical implementation of the scheme.

Purpose and Overview

The primary purpose of this paper is to present an approach to the

LNOILP problem which provides an "optimal" aggregate objective function.

That is, the function is optimal in the sense that the magnitude of the

largest coefficient is minimized. As a consequence, the aggregation of ob-

jectives in the LMILP problem may, in may instances, be transformed from

simply an academic proposal into a practical, implemeutable end result. In

this paper we present this method, demonstrate it on a numerical example,

and compare it with Sherali's approach.

3
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2. BACKGROUND

The most promising approach that has been proposed, thus far, for the

aggregation of objectives in the LMOILP problem is the scheme developed, as

mentioned earlier, by Sherali. In his paper, Sherali presents two algo-

rithm where one dominates the other In the sense of always obtaining

smaller saximsa aggregate objective function coefficients. That algorithm,

denoted in [31 as algorithm 2, is given below:

The Sherali Algorithm

Step 1: When required in the algorithm, the upper bound of objective z(k),

denoted as UB[z(k)], is found by:

n
UB[z(k)] - E u(j)ic(j,k)l Cl)

j -1

where:

UI[J(k)] is the U) of the k-th objective

u(j) is the U) of the J-th variable

c(Jk) is the coefficient of the J-th variable in the k-th

objective

Note that in many cases the problem structure may permit the easy

derivation of a far tighter upper bound than that given by (1)

and, for such cases, the tighter upper bound may be used without

need to change the remaining steps of the algorithm.

Step 2: Initialize:

Set 1(K) - c(K)*x

Set w(K) = 1

Set p (a counter) = K-I

4



Step 3: Compute:

w(p) - 1 + UB[F(p+l)] (2)

F(p) - F(p+l) + w(p)*z(p) (3)

Step 4: Check for termination: If p - 1, stop. The aggregate objective

is F(1). However, if p exceeds 1, then set p - p-I and return

* to step 3.

*. Ezample

In order to demonstrate the Sherali algorithm, we consider th .. ow-

ing numerical example. Later, we shall compare the results obtain,. uere

with those of the enhanced method. The LMOILP problem under consideration

is given as:

maximige 2(1) - x(I) + x(2) + x(3)

mximixe z(2) - 200*x.(I) + 150*x(2) + 250*x(3)

auauimie z(3) - 180*x(l) + 155*x(2) + 240*x(3)

subject to:

Ax-b

z(J) 4 10 and integer for all j

* Since the form of the constraint set (i.e., A x-b) plays no part in the

derivation of the weights, we use the general form in the above example.

Now (again recall that the three objectives above have been preemptively

ordered), applying the Sherali algorithm gives:

F(3) - 180*z(1) + 155*z(2) + 240*x(3)

w(3) a 1

5
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Thus, w(2) - I + 13[F(3)]

- 1 + 1800 + 1550 + 2400 5751

And, F(2) - F(3) + w(2)*z(2)

- 180*x(3) + 155*x(2) + 240*x(3)

+ 1150200*x(1) + 862650*x(2) + 1437750*x(3)

Or, F(2) - 1150380*x(1) + 862805*x(2) + 1437990*x(3)

Finally, w(l) - 1 + UB[F(2)] - 34511751

F() - F(2) + w(1)*z(1)

And thus:

F() - 35,662,131*x(1) + 31,374,556*x(2) + 35,949,741*x(3)

Limitations

While the Sherali algorithm, as described above, will accomplish ob-

jective function aggregation in LMOILP, its primary drawback is made obvi-

ous by the small numerical example. That is, the coefficients of the ag-

gregated objective, F(1), range in size from 31,374,556 up to 35,949,741.

In many real world problem, the size of such coefficients will be far

larger. Large enough, in fact, to create an integer overflow on the dig-

ital computer as well as other practical difficulties in algorithm imple-

mentation. As such, the first question that arises, in concern to this or

any other approach, is in regard to the possib !lity for development of a

(quick and easy) method for minimizing the magnitude of the largest coeffi-

• "cient in the aggregate objective. In the next section, we show that there

does exist a simple, efficient approach to accomplish this goal.

6
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3. PROBLEM STATEMENT

*: We may replace our original statement of the LMOILP problem, i.e.,

(P), with the following equivalent formulation:

maximize {C*x - y*S*x): A*xmb, 0x~u and integer} (PE) where:

0
c(1)*x
c(2)*x

S*x- (4)

L c( (K-I)*x

and y is a m order column weighting vector.

The replacement of (P) by (PE) is made possible by the preemptive ordering

of the multiple objectives. That is, in the LMOILP, the optimization of a

higher level objective preempts that of any lower objective. Consequently,

relative to any lower level objective, the higher level objective is a con-

stant. As such, S*x, as given in (4) provides for the development of just

one possible equivalent formulation of (P). However, for our purposes, it

is the one we shall use to develop the enhanced aggregate objective scheme

.2 since it provides a very simple and speedy approach for conversion.

With reference to (PE), our goal is to determine the vector of

weights, y , so as to minimize the magnitude of the largest coefficient in

the aggregate objective, F(I), when the Sherali algorithm is employed. To

accomplish this, we need only deal with two objectives since any number of

". objectives may be dealt with by combining two at a time (i.e., the two low-

. est ranked objectives are first aggregated. Next, this aggregate objective

is combined with the third lowest ranked objective, and so on.).

.7
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Given two objectives, z(1) and z(2) (where they have been preemptively

ordered) wherein:

Z(1 - c(1)*x

z(2) - c(2)*x

we express these, using the form (FE), an:

Z(1 - c(1)*x

Z'(2 - c(2)*x - Y(2)*[c(2)*xI

Now, if the Sherali algorithm is applied to z(1) and z'(2), the resulting

aggregate objective is given as:

F'(1) - w(1)*c(l)*x + Ic(2)*x - y(2)*(c(l)*xJl

but, from (2), we may replace v(1) by I + US~z'(2)J. Thus F'(1) may be re-

written as:

F'(1 - {l+UE[z'(2)]I*[C(l)*x] + {c(2)*x-Y(2)*(c(I)*xJ}

Further, from (1), we say state F(M. an:

n
71(1) - {l + E u(J)lc(J.2)..Y(2)*c(J,1)1}*[c(l)*xJ

J-1

+ Ic(2)*x-y(2)*[c(I)*x1} (5)

Using (5), the coefficient of each variable, x(j), in the aggregate objec-

tive function, F'(1, may be written as a function of y(2) as shown below:

a

c'(j) 1 1 + E u(j)lc(J,2)-.y(2)*c(J,1)1}*fc(J,1)]

*+ [c(J,2)-y(2)*c(j,l)j (6)

We thus wish to find y(2) so as to minimize the iuaxinim value of c'(j) for

any j .This may be stated as:

8



minmax {c'(j)l over all j (7)

ue Observations and Resulting Simplifications

To solve (7), we may iinediately note that:

(a) Relation (6) and, consequently, (7) are obviously convex.

* -. (b) The single unknown is y(2)

(c) The values of y(2) are restricted to those which will maintain

integer coefficients in the resultant, aggregate objective

function. See [3].

As a result, we may easily solve (7) for the optimal value of y(2) by sim-

ply employing a discrete search scheme (e.g., Fibonacci search). This

makes the construction of the optimal form of the aggregate objective both

simple and practical. In the section to follow, we demonstrate this con-

cept via the example previously solved by the Sherali algorithm.

P4
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4. EXAMPLE

In Section 2, we used the Sherali algorithm to construct an aggregate

objective function for a LMOILP with three objectives. Further, we noted

the substantial increase in the magnitude of the aggregate objective coef-

ficients, relative to the coefficients of the original objective functions.

Here, we shall utilize the results of Section 3, specifically relationship

(7), so as to develop the optimal aggregate objective function for this

same example.

Recall that the example of Section 2 was:

maximize z(1) - x(1) + x(2) + x(3)

maximize z(2) - 200*x(1) + 150*x(2) + 250"x(3)

maximize z(3) - 180*x(l) + 1551x(2) + 240*x(3)

subject to:

A*x-b

x(j) ( 10 and integer for all j

We work first with the two lowest ranked objectives, z(2) and z(3).

From (6) we note that:

c'(j) =

{ 1+10[ 1180-200 5y(3) 1+1 155-150*y(3)I+1240-250*y(3) ]}

*c(J,2) + [c(J,3)-y(3)*c(j,2)1]

* Listed below are the values for the aggregate objective function formed

from z(2) and z(3) for several values of y(3):

y(3) c'() c'(2) c'(3)
0 1,150,380 862,805 1,437,990
1 70,180 52,555 87,740
2 1,250,420 937,795 1,563,010

10
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Since (7) is a convex function, we note that the optimal value for y(3) is

y(3) - 1. Note also that, for y(3) - 0, we obtain the same coefficients as

found earlier (when combining these two objectives) via the Sherali

algorithm*

Next, we wish to combine z() with the composite objective formed from

z(2) and z(3) when y(3) - 1. Denoting that composite objective as FI(2),

we have:

Z(I) - X(1) + x(2) + x(3)

FI'(2) - 70180*x(l) + 52555*x(2) + 87740*x(3)

and c'(j) is then given by:

c'(j) - {1+1O*[170180-y(2)1+152555-y(2)l+187740-y(2)II}

*c(J,1) + [c(J,2)-c(j,I)*y(2)1

Using any discrete search algorithm, we determine the final, aggregate ob-

jective function for the three original objectives. This function, denoted

as F'(I) is given as:

F'(I) - 351,851*x(1) + 334,226*x(2) + 369,411*x(3)

Recall that the Sherali algorithm produced, for the same example, the ag-

gregate objective shown below:

F(I) - 35,662,131*x(1) + 31,374,556*x(2) + 35,949,741*x(3)

When the above aggregate objective is compared to that found, in

Section 2, via the Sherali algorithm, the difference is obviously substan-

tial. That is, the results from the Sherali algorithm are two orders of

magnitude greater than that determined by the enhanced scheme. Given a

larger number of objective functions, the differences can be even more

pronounced.

w1 11
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5. CONCLUSIONS AND SUMARY

In an earlier paper, Sherali presented an algorithm for the conversion

of the LZ4OILP problem into an equivalent conventional linear integer pro-

gram. We have demonstrated, in this paper, that such an aggregation scheme

may be substantially enhanced via a simple and practical method. Although

not Illustrated, the enhanced approach (or the Sherali algorithm) may be

even further improved by replacing the naive upper bound of (1) by a tight-

er upper bound. Such improved upper bounds may be found, for many integer

programming models, via relatively simple and straight forward means. It

should be recognized, however, that although the procedure proposed herein

will provide for enhanced aggregate objective function development, it is

optimal only for the form of the matrix S as shown in (4). Other ap-

proaches, using more complex form of S can be developed to provide for

even further improvement. Work in this area is, in fact, still in prog-

res. However, as of this time, it is not yet clear that the additional

improvement (i.e., reduction in the size of objective function coeffi-

cients) is worth the sometimes considerable additional effort and complex-

ity.

12
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